The role of DNA mismatch repair in platinum drug resistance.
نویسندگان
چکیده
Loss of DNA mismatch repair occurs in many types of tumors. The effect of the loss of DNA mismatch repair activity on sensitivity to cisplatin and a panel of analogues was tested using two pairs of cell lines proficient or deficient in this function. HCT116+ch2, a human colon cancer cell line deficient in hMLH1, was 2.1-fold resistant to cisplatin and 1.3-fold resistant to carboplatin when compared to a subline complemented with chromosome 3 expressing a wild-type copy of hMLH1. Likewise, the human endometrial cancer cell line HEC59, which is deficient in hMSH2, was 1.8-fold resistant to cisplatin and 1.5-fold resistant to carboplatin when compared to a subline complemented with chromosome 2 with a wild-type hMSH2. In contrast to cisplatin and carboplatin, which form the same types of adducts in DNA, there was no difference in sensitivity between the DNA mismatch repair-proficient and -deficient cell lines for oxaliplatin, tetraplatin, transplatin, JM335, or JM216. The formation of protein-DNA complexes that contained hMSH2 and hMLH1 was documented by mobility shift assay when nuclear extracts were incubated with DNA platinated with cisplatin but not with oxaliplatin. These results demonstrate a correlation between failure of the DNA mismatch repair proteins to recognize the platinum adduct and low-level resistance, suggesting a role for the DNA mismatch repair system in generating signals that contribute to the generation of apoptotic activity. They also identify the use of drugs whose adducts are not recognized as a strategy for circumventing resistance due to loss of DNA mismatch repair.
منابع مشابه
Platinum resistance: the role of DNA repair pathways.
Although platinum chemotherapeutic agents such as carboplatin, cisplatin, and oxaliplatin are used to treat a broad range of malignant diseases, their efficacy in most cancers is limited by the development of resistance. There are multiple factors that contribute to platinum resistance but alterations of DNA repair processes have been known for some time to be important in mediating resistance....
متن کاملMonofunctional platinum-DNA adducts are strong inhibitors of transcription and substrates for nucleotide excision repair in live mammalian cells.
To overcome drug resistance and reduce the side effects of cisplatin, a widely used antineoplastic agent, major efforts have been made to develop next generation platinum-based anticancer drugs. Because cisplatin-DNA adducts block RNA polymerase II unless removed by transcription-coupled excision repair, compounds that react similarly but elude repair are desirable. The monofunctional platinum ...
متن کاملA novel trinuclear platinum complex overcomes cisplatin resistance in an osteosarcoma cell system.
Multinuclear platinum compounds have been designed to circumvent the cellular resistance to conventional platinum-based drugs. In an attempt to examine the cellular basis of the preclinical antitumor efficacy of a novel multinuclear platinum compound (BBR 3464) in the treatment of cisplatin-resistant tumors, we have performed a comparative study of cisplatin and BBR 3464 in a human osteosarcoma...
متن کاملThe role of DNA mismatch repair in drug resistance.
Loss of DNA mismatch repair (MMR) has been observed in a variety of human cancers. In addition to predisposing to oncogenesis, loss of MMR activity is of concern with respect to the use of chemotherapeutic agents to treat established tumors. Loss of MMR results in drug resistance directly by impairing the ability of the cell to detect DNA damage and activate apoptosis and indirectly by increasi...
متن کاملThe Role of DNA Mismatch Repair in Drug Resistance1
Loss of DNA mismatch repair (MMR) has been observed in a variety of human cancers. In addition to predisposing to oncogenesis, loss of MMR activity is of concern with respect to the use of chemotherapeutic agents to treat established tumors. Loss of MMR results in drug resistance directly by impairing the ability of the cell to detect DNA damage and activate apoptosis and indirectly by increasi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 56 21 شماره
صفحات -
تاریخ انتشار 1996